Code line

If you use any of the following codes in your research, we would appreciate if you cite the corresponding paper as a reference in your publication. Thank you!


license

Multistatic Localization of a Moving Object without the Knowledge of Transmitter Position (11/02/2023)

    Reference: J. Pei, G. Wang, K. C. Ho, and L. Huang, "Reducing bias for multistatic localization of a moving object by transmitter at unknown position," IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 5, pp. 5324-5341, Oct. 2023. Simulation: MSLocUknTxPosMvgObj_Sim
    All: MSLocUknTxPosMvgObj.zip

Doppler-Shifted Frequency (DSF) Localization without the Knowledge of Signal Propagation Speed (11/01/2023)

    Reference: D. Lin, G. Wang, K. C. Ho, and L. Huang, "Source localization by frequency measurements in unknown signal propagation speed environments," IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 4, pp. 3953-3970, Aug. 2023.
    Simulation: DSFLocUknPropSpdMvgSrc_Sim
    Simulation: DSFLocUknPropSpdStnySrc_Sim
    All: DSFLocUknPropSpdMvgSrc.zip
    All: DSFLocUknPropSpdStnySrc.zip

TDOA Localization without the Knowledge of Signal Propagation Speed (10/22/2023)

    Reference: Y. Sun, K. C. Ho, Y. Yang, and L. Chen, "An asymptotically optimal estimator for source location and propagation speed by TDOA," IEEE Signal Process. Lett., vol. 30, pp. 1037-1041, Aug. 2023.
    Simulation: TDOALocUknPropSpd_Sim
    All: TDOALocUknPropSpd.zip

Single and Coupled Ellipse Fittings by MCC-VC (07/20/2023)

    Reference: Wei Wang, Gang Wang, Chenlong Hu, and K. C. Ho, “Robust ellipse fitting based on maximum correntropy criterion with variable center,” IEEE Trans. Image Process., vol. 32, pp. 2520-2535, Apr. 2023.
    All: MCC-VC_ellipse_fitting.zip

Transmitters and Scatterers Localization by Single Receiver Using TDOAs and AOAs (06/28/2023)

    Reference: Y. Zhang and K. C. Ho, "Localization of transmitters and scatterers by single receiver", IEEE Trans. Signal Process., vol. 71, pp. 2267-2282, 2023.
    Simulation: TDOAAOALocSglRx_Sim
    All: TDOAAOALocSglRx.zip

Objective Prior Bayesian Detector (02/25/2023)

    Reference: M. H. Al-Ali and K. C. Ho, "Objective Bayesian approach for binary hypothesis testing of multivariate Gaussian observations," IEEE Trans. Inf. Theory, vol. 69, no. 2, pp. 1337-1354, Feb. 2023.
    Pd vs SNR for RealData: PdSNR_RealData
    Pd vs SNR for ComplexData: PdSNR_ComplexData
    Pd vs Pfa: PdAnalyticalAndSimulation
    Bayes Factor: BayesFactor
    Simulation: ObjBayesianDtr_SimFig1
    Simulation: ObjBayesianDtr_SimFig2
    Simulation: ObjBayesianDtr_SimFig3
    All: ObjBayesianDtr.zip

DSF TMA in 3-D (10/28/2022)

    Reference: M. H. Ahmed, K. C. Ho, and G. Wang, "3-D target localization and motion analysis based on Doppler shifted frequencies," IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 2, pp. 815-833, Apr. 2022.
    Closed-Form Solution: DSF3DTMA_CFS
    SDP Solution: DSF3DTMA_SDP
    MLE: DSF3DTMA_CFS_MLE
    CRLB: DSF3DTMA_CRLB
    Weight: DSF3DTMA_Weight
    Simulation: DSF3DTMA_Sim
    All: DSF3DTMA.zip

DSF localization in 3-D (10/28/2022)

    Reference: M. H. Ahmed, K. C. Ho, and G. Wang, "3-D target localization and motion analysis based on Doppler shifted frequencies," IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 2, pp. 815-833, Apr. 2022.
    Closed-Form Solution: DSF3DLoc_CFS
    SDP Solution: DSF3DLoc_SDP
    MLE: DSF3DLoc_CFS_MLE
    CRLB: DSF3DLoc_CRLB
    Weight: DSF3DLoc_Weight
    Simulation: DSF3DLoc_Sim
    All: DSF3DLoc.zip

DTDTDOA localization (10/18/2022)

    Reference: Y. Zhang and K. C. Ho, "Localization by signals of opportunity in the absence of transmitter position," IEEE Trans. Signal Process., vol. 72, pp. 4602-4617, 2022. (Typo: the submatrix $\mathbf{I}_M$ on the left side of $\mathbf{R}$ in (93b) should be -$\mathbf{I}_M$)
    Closed-Form Solution: DTDTDOALoc
    Closed-Form Refinement Solution: DTDTDOALocRfn
    MLE: DTDTDOALoc_MLE
    CRLB: DTDTDOALoc_CRLB
    Simulation: DTDTDOALoc_SimFig7Fig9
    Simulation: DTDTDOALoc_SimFig11
    All: DTDTDOALoc.zip

DTD localization (10/18/2022)

    Reference: Y. Zhang and K. C. Ho, "Localization by signals of opportunity in the absence of transmitter position," IEEE Trans. Signal Process., vol. 72, pp. 4602-4617, 2022.
    Closed-Form Solution: DTDLoc
    Closed-Form Refinement Solution: DTDLocRfn
    MLE: DTDLoc_MLE
    CRLB: DTDLoc_CRLB
    Simulation: DTDLoc_SimFig6Fig8
    Simulation: DTDLoc_SimFig10
    All: DTDLoc.zip

TOA localization by Moving Transceivers (8/28/2022)

    Reference: K. C. Ho, "Localization through transceivers in unknown constant velocity trajectories," IEEE Trans. Signal Process., vol. 70, pp. 3011-3028, 2022. (Note: Both joint and sequential estimations require synchronization of receivers.)
    Gauss-Newton MLE: XcvrTOALoc_GN_MLE
    Sequential Estimation: XcvrTOALoc_GN_Seq
    CRLB: XcvrTOALocCRLB
    CRLB_SeqEst: XcvrTOALocSeqCRLB
    Simulation: XcvrTOALoc_Sim
    All: XcvrTOALoc.zip

Localization in 3-D by Space Angles from Linear Arrays (5/08/2022)

    Reference: Y. Sun, K. C. Ho, L. Gao, J. Zou, Y. Yang, and L. Chen, "Three dimensional source localization using arrival angles from linear arrays: analytical investigation and optimal solution," IEEE Trans. Signal Process., vol. 70, pp. 1864-1879, 2022.
    SDR Solution: SA3DLocLA_SDR
    Gauss-Newton MLE: SA3DLocLA_MLE
    CRLB: SA3DLocLACRLB
    Example: Fig10to22
    All: SA3DLocLA.zip

Computationally Efficient and Location Robust Estimator for IoT Device (4/12/2022)

    Reference: Y. Sun, K. C. Ho, G. Wang. J. Chen, Y. Yang, L. Chen, and Q. Wan, "Computationally attractive and location robust estimator for IoT device positioning," IEEE Internet Things J., to appear.
    SCO Closed-Form Solution: TDOA_SCO_MPR
    SUM Closed-Form Solution: TDOA_SUM_MPR
    GTRS Closed-Form Solution: TDOA_GTRS_MPR
    CRLB: ConsCRLB
    Example: Fig2to9
    Example: Fig10
    Example: Fig20to23
    Example: Fig24to27
    All: TDOALocDeviceIoT.zip

Multistatic Localization of a Moving Object using a Stationary Transmitter at Unknown Location (11/28/2021)

    Reference: Y. Zhang and K. C. Ho, "Multistatic localization in partially dynamic scenario with only sensor positions available," IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 5, pp. 3416-3432, Oct. 2021.
    MOST Closed-Form Solution: MSLocMOST_CFS
    MOMT Closed-Form Solution: MSLocMOMT_CFS
    MOST Maximum Likelihood Estimator: MSLocMOST_MLE
    MOST Maximum Likelihood Estimator (Object Emitting Signal): MSLocNoTxMOST_MLE
    MOST CRLB: MSLocMOSTCRLB
    MOMT CRLB: MSLocMOMTCRLB
    Example: Example_MOST_Fig6to9
    All: MOST.zip

Multistatic Localization of a Static Object using a Moving Transmitter at Unknown Location (11/28/2021)

    Reference: Y. Zhang and K. C. Ho, "Multistatic localization in partially dynamic scenario with only sensor positions available," IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 5, pp. 3416-3432, Oct. 2021.
    SOMT Closed-Form Solution: MSLocSOMT_CFS
    MOMT Closed-Form Solution: MSLocMOMT_CFS
    SOMT Maximum Likelihood Estimator: MSLocSOMT_MLE
    SOMT Maximum Likelihood Estimator (Object Emitting Signal): MSLocNoTxSOMT_MLE
    SOMT CRLB: MSLocSOMTCRLB
    MOMT CRLB: MSLocMOMTCRLB
    SOST CRLB: MSLocSOSTCRLB
    Example: Example_SOMT_Fig2to5
    All: SOMT.zip

2D Moving Object Localization by Doppler Shifted Frequencies, Multiple Time Instants (08/18/2021)

    Reference: M. Ahmed, K. C. Ho, and G. Wang, "Localization of a moving source by frequency measurements," IEEE Trans. Signal Process., vol. 68, pp. 4839-4854, 2020.
    CFS(Algebraic) Solution: DSF2DLocMtTm_CFS
    SDP Solution: DSF2DLocMtTm_SDP
    Localization Unknown fo: DSF2DLocFoUnkwnMtTm
    CRLB: DSF2DLocMtTm_CRLB
    CRLB Unknown fo: DSF2DLocFoUnkwnMtTm_CRLB
    Example: Example_Fig6Fig7
    All: DSF2DLocMtTm.zip
2D Moving Object Localization by Doppler Shifted Frequencies, Single Time Instant (08/18/2021)

    Reference: M. Ahmed, K. C. Ho, and G. Wang, "Localization of a moving source by frequency measurements," IEEE Trans. Signal Process., vol. 68, pp. 4839-4854, 2020.
    CFS(Algebraic) Solution: DSF2DLoc_CFS
    SDP Solution: DSF2DLoc_SDP
    Localization Unknown fo: DSF2DLocFoUnkwn
    CRLB: DSF2DLoc_CRLB
    CRLB Unknown fo: DSF2DLocFoUnkwn_CRLB
    Example: Example_Fig2Fig3Fig4Fig5
    All: DSF2DLoc.zip

3D Localization or Self-Localizaiton of Rigid Body by AOA (07/18/2021)

    Reference: Y. Wang, G. Wang, S. Chen, K. C. Ho, and L. Huang, "An investigation and solution of angle based rigid body localization," IEEE Trans. Signal Process., vol. 68, pp. 5457-5472, 2020.
    SDP Solution: AOARBL3D_SDR
    BRPLE Solution: AOARBL3D_BRPLE
    CRLB: AOARBL3D_CRLB
    Plot Figure: AOARBL3D_PlotFig
    Example: Example_Loc
    All: AOARBLocSelfLoc3D.zip

3D Localization by AOA in MPR (04/03/2021)

    Reference: Y. Sun, K. C. Ho, and Q. Wan, "Eigenspace solution for AOA localization in modified polar representation," IEEE Trans. Signal Process., vol. 68, pp. 2256-2271, 2020.
    EV Closed-Form Solution: AOA3DLocMPR_EV
    BR Closed-Form Solution: AOA3DLocMPR_BR
    EV Solution Theoretical Performance: AOA3DLocMPR_CovEV
    BR Solution Theoretical Performance: AOA3DLocMPR_CovBR
    CRLB: AOA3DLocMPR_CCRLB
    Example: Example_Figs
    All: AOA3DLocMPR.zip

Time Delay or with Dopple Shift Localization Having Object and Sensor Motion Effects (11/12/2020)

    Reference: T. Jia, K. C. Ho, H. Wang, and X. Shen, "Localization of a moving object with sensors in motion by time delays and Doppler shifts," IEEE Trans. Signal Process., vol. 68, pp. 5824-5841, 2020.
    MLE Using Time by Gauss-Newton Iterations: TmLocObjSsrMtnEft_GN, TmLocObjMtnEft_CFS
    MLE Using Time by Quasi-Newton Iterations: TmLocObjSsrMtnEft_QN, TmLocObjMtnEft_CFS
    MLE Using Time & Doppler by Gauss-Newton Iterations: TmDpLocObjSsrMtnEft_GN, TmDpLocObjMtnEft_CFS
    MLE Using Time & Doppler by Quasi-Newton Iterations: TmDpLocObjSsrMtnEft_QN, TmLocObjMtnEft_CFS
    Time or/and Doppler Ignoring Object and Sensor Motion Effects: TmDpLocIgrObjSsrMtnEft_GN
    Time or/and Doppler Ignoring Object Motion Effect: TmLocSsrMtnEft, TmDpLocSsrMtnEft
    CRLB and Theoretical Performance: TmDpLocObjSsrMtnEftCRLB, TheoryMSE
    Example: Example_Fig5Fig7
    All: TmDpLocObjSsrMtnEft.zip

Time Delay or with Dopple Shift Localization Having Object Motion Effect (11/12/2020)

    Reference: T. Jia, K. C. Ho, H. Wang, and X. Shen, "Localization of a moving object with sensors in motion by time delays and Doppler shifts," IEEE Trans. Signal Process., vol. 68, pp. 5824-5841, 2020.
    Closed-Form Solution Using Time: TmLocObjMtnEft_CFS
    Closed-Form Solution Using Time & Doppler: TmDpLocObjMtnEft_CFS
    CRLB: TmDpLocObjMtnEftCRLB
    Example: Example_Fig3Fig4
    All: TmDpLocObjMtnEft.zip

Multistatic Localization of a moving object by a moving transmitter at unknown location having unknown time and frequency offsets (08/25/2020)

    Reference: Y. Zhang and K. C. Ho, "Multistatic moving object localization by a moving transmitter of unknown location and offset," IEEE Trans. Signal Process., vol. 68, pp. 4438-4453, 2020.
    Algebraic Closed-Form Solution: MSLocJntObjTxPosVel
    Iterative MLE Solution: MSLocJntObjTxPosVel_MLE
    Iterative MLE Solution by Indirect-path measurements: MSLocObjPosVelInd_MLE
    CRLBs: MSLocObjPosVelCRLB
    Example: Example_Fig4Fig7
    All: MultiStaticMvgObjLocNoTxPosVelUnknOfsts.zip

Multistatic Localization of a stationary object by a stationary transmitter at unknown position having unknown time offset (08/25/2020)

    Reference: Y. Zhang and K. C. Ho, "Multistatic moving object localization by a moving transmitter of unknown location and offset," IEEE Trans. Signal Process., vol. 68, pp. 4438-4453, 2020.
    Algebraic Closed-Form Solution: MSLocJntObjTxPos
    Iterative MLE Solution: MSLocJntObjTxPos_MLE
    Iterative MLE Solution by Indirect-path measurements: MSLocObjPosInd_MLE
    CRLBs: MSLocObjPosCRLB
    Example: Example_Fig6Fig8
    All: MultiStaticLocNoTxPosUnknOfst.zip

Ellptic or Hyperbolic Localization Using Minimum Measurement Solutions (03/31/2020)

    Reference: Sanaa S. A. Al-Samahi, Yang Zhang, K. C. Ho, "Elliptic and hyperbolic localizations using minimum measurement solutions," Elsevier Signal Process., vol. 167, Feb. 2020.
    Individual(MinMsr) Solution: IndvLocSol
    Measurement Combinations for Individual Solutions: Config_Comb
    Individual Solution Ambiguity Elimination: SolDetect
    Individual Solution Selection for BLUE: IndvSolSel
    Combining Individual Solutions by BLUE: BLUEest
    Example (Ellpitic): Example_Fig12Fig13
    Example (Hyperbolic): Example_Fig15Fig16
    All: MinMsrSolElptHypb.zip

Rigid Body Localization by TOA Using Noisy Anchor Positions with a Calibration Emitter at Noisy Position (02/20/2020)

    Reference: B. Hao, K. C. Ho, and Z. Li, "Range based rigid body localization with a calibration emitter for mitigating anchor position uncertainties," IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5734-5748, Dec. 2019.
    MLE1: TOARBLAncErrCalSrc_MLE1, TOARBLAncErrCalSrc_CostEval_MLE1
    MLE2: TOARBLAncErrCalSrc_MLE2, TOARBLAncErrCalSrc_CostEval_MLE2
    MLE3: TOARBLAncErrCalSrc_MLE3, TOARBLAncErrCalSrc_CostEval_MLE3
    eDAC: TOARBLAncErrCalSrc_eDAC, TOAAncUpd_pNsy, TOALoc_pNsy, TOARBL_REF_aNsy
    CRLB: TOARBLAncErrCalSrcCRLB
    Example: Example_Figs
    All: TOARBLAncErrCalSrc.zip

Time Delay or with Dopple Shift Localization Having Sensor Motion Effect (02/10/2020)

    Reference: T. Jia, K. C. Ho, H. Wang, and X. Shen, "Effect of sensor motion on time delay and Doppler shift localization: analysis and solution," IEEE Trans. Signal Process., vol. 67, no. 22, pp. 5881-5895, Nov. 2019.
    Closed-Form Solution Using Time (for Figs. 4 & 8): TmLocSenMtnEft
    SDR Solution Using Time (for Figs. 4 & 8): TmLocSenMtnEft_SDR
    MLE Using Time Ignoring Sensor Motion Effect (for Figs. 4 & 8): TmLocIgSenMtnEft_GN
    Closed-Form Solution Using Time & Doppler (for Figs. 5 & 9): TmDpLocSenMtnEft
    SDR Solution Using Time & Doppler (for Figs. 5 & 9): TmDpLocSenMtnEft_SDR
    MLE Using Time & Doppler Ignoring Sensor Motion Effect (for Figs. 5 & 9): TmDpLocIgSenMtnEft_GN
    CRLB (for Figs. 4, 5, 8 & 9): TmDpLocSenMtnEftCRLB
    Example: Example_Fig4Fig5Fig8Fig9
    All: TmDpLocSenMtnEft.zip

Multistatic Localization by Time Delay Measurements without Transmitter Position (02/10/2020)

    Reference: Y. Zhang and K. C. Ho, "Multistatic localization in the absence of transmitter position," IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4745-4760, Sep. 2019.
    Algebraic Closed-Form Solution for Single Transmitter (for Figs. 3 & 4): MSLocJntObjTx
    Algebraic Closed-Form Solution for Multiple Trnasmitters (for Fig. 6): MSLocJntObjTxMulti
    CRLB without Sensor Position Error (for Fig. 3): MSLocJntObjTxCRLB
    CRLB with Sensor Position Error (for Fig. 4): MSLocJntObjTxCRLB_RxErr
    CRLB for Multiple Transmitters with Sensor Position Error (for Fig. 6): MSLocJntObjTxMultiCRLB_RxErr
    Example: Example_Fig3
    Example: Example_Fig4
    Example: Example_Fig6
    All: MultiStaticLocNoTxPos.zip

Algebracic solution for TDOA localization in MPR (02/15/2020)

    Reference: Y. Sun, K. C. Ho, and Q. Wan, “Solution and analysis of TDOA localization of a near or distant source in closed form,” IEEE Trans. Signal Process., vol. 67, no. 2, pp. 320-335, Jan. 2019.
    SUM Solution: TDOA_SUM_MPR
    GTRS Solution: TDOA_GTRS_MPR
    CRLB: TDOALocCRLB_MPR
    SUM Theoretical Performance: Cov_SUM_MPR, Bias_SUM_MPR
    GTRS Theoretical Performance: Cov_GTRS_MPR, Bias_GTRS_MPR
    Example: Example
    All: TDOALoc_AlgbSolMPR.zip

Refinement of TDOAs in Multi-Source Scenario Using Rank Properties

    Reference: T.-K. Le, K. C. Ho, and T.-H. Le, “Rank properties for matrices constructed by time differences of arrival,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3491-3503, Jul. 2018.
    TDOA Refinement: Refine_TDOA_distance_matrix
    Example: Example_Fig4Fig5
    All: TDOARefinement.zip

AOA localization Using MLE in MPR Formulation

    Reference: Y. Wang and K. C. Ho, “Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1242-1254, Feb. 2018.
    Iterative MLE Solution in MPR: AOA_MLEMPR
    CVX Solution in MPR(for Iterative MLE Initialization): AOA_SDRMPR_3D
    Iterative MLE Solution in Cartesian: AOA_MLECAR_3D
    CRLB(HBB): AOALoc_HBB_3D
    Example: Example_Fig5Fig6
    Example: Example_Fig7
    All: AOALoc_MLEMPR.zip

AOA and TDOA localization Using MLE in MPR Formulation

    Reference: Y. Wang and K. C. Ho, “Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1242-1254, Feb. 2018.
    Iterative MLE Solution in MPR: AOATDOA_MLEMPR
    CVX Solution in MPR(for Iterative MLE Initialization): AOATDOA_SDRMPR_3D
    Iterative MLE Solution in Cartesian: AOATDOA_MLECAR_3D
    CRLB(HBB): AOATDOALoc_HBB_3D
    Example: Example_Fig8Fig9
    Example: Example_Fig10Fig11
    All: AOATDOALoc_MLEMPR.zip

TDOA localization Using MLE in MPR Formulation

    Reference: Y. Wang and K. C. Ho, “TDOA positioning irrespective of source range,” IEEE Trans. Signal Process., vol. 65, no. 6, pp. 1447-1460, Mar. 2017.
    Iterative MLE Solution: TDOA_MLEMPR
    CVX Solution (for Iterative MLE Initialization): TDOA_SDRMPR_3D
    CRLB: TDOALocCRLB_MPR
    Example: Example_Fig3
    Example: Example_Fig8
    All: TDOALoc_MLEMPR.zip

TDOA localization in LER Scenario

    Reference: S. Li and K. C. Ho, “Accurate and effective localization of an object in large equal radius scenario,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8273-8285, Dec. 2016.
    Solution: TDOALoc_LER
    CRLB: TDOALocCRLB
    Example: Example_Fig2
    Example: Example_Fig6, TDOALoc, Cov_TDOA, findCenter
    All: TDOA_LER.zip

Multistatic Sonar Localization in Closed-Form by Differential Delay and Doppler Shift Measurements

    Reference: L. Yang, L. Yang, and K. C. Ho, "Moving target localization in multistatic sonar by differential delays and Doppler shifts," IEEE Signal Process. Lett., vol. 23, no. 9, pp. 1160-1164, Sep. 2016.
    Solution: MultiStaticDfDlyDopplerLoc
    CRLB(Differential Delay Only): MultiStaticDfDlyLocCRLB
    CRLB: MultiStaticDfDlyDopplerLocCRLB
    Example: MultiStaticDfDlyDopplerLocExample
    All: MultiStaticDfDlyDopplerLoc.zip

3D Localization in Closed-Form by TDOA and AOA Measurements

    Reference: J. Yin, Q. Wan, S. Yang, and K. C. Ho, "A simple and accurate TDOA-AOA localization method using two stations," IEEE Signal Process. Lett., vol. 23, pp. 144-148, Jan. 2016.
    Solution, Performance: TDOAAOALoc
    All: TDOAAOALoc.zip

DAC Method for Rigid Body Localization Using TOAs

    Reference: S. Chen and K. C. Ho, "Accurate localization of a rigid body using multiple sensors and landmarks," IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6459-6472, Dec. 2015.
    Solution: TOARBL_DAC, TOARBL_REF, TOALoc
    CRLB: TOARBL_CRLB
    Example: Example_Fig2Fig3Fig4Fig5
    All: TOALocRigidBody.zip

AOA 3D Localization in Closed-Form With Reduced Bias

    Reference: Y. Wang and K. C. Ho, "An asymptotically efficient estimator in closed-Form for 3-D AOA localization using a sensor network," IEEE Trans. Wireless Commun., vol. 14, no. 12, pp. 6524-6535, Dec. 2015.
    Solution: AOA3DLoc_BRPLE
    CRLB: AOA3DLocSenPosErrCRLB
    Bias: AOA3DLocBias
    Example: Example
    All: AOA3DLoc.zip

Multistatic Localization by Time Delay or with Bearing Measurements Having Unknown Signal Propagation Speed

    Reference: L. Rui and K. C. Ho, “Efficient closed-form estimators for multistatic sonar localization,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 1, pp. 600-614, Jan. 2015.
    Solution, Random Speed: EllpLocMultTxRxRdnC
    CRLB, Random Speed: EllpLocMultTxRxRdnCCRLB
    Solution, Fixed Unknown Speed: EllpLocMultTxRxUknC
    CRLB, Fixed Unknown Speed: EllpLocMultTxRxUknCCRLB
    Example: ExampleFig3
    Example: ExampleFig5Fig6
    All: EllpLocMultTxRxUknC.zip

TDOA and FDOA Localization in Closed-Form With Reduced Bias

    Reference: K. C. Ho, "Bias reduction for an explicit solution of source localization using TDOA," IEEE Trans. Signal Process., vol. 60, pp. 2101-2114, May 2012.
    BiasRed Solution: TDOAFDOALoc_BiasRed, MinGenEigCmp
    CRLB: TDOAFDOALocMvgSrcSenCRLB
    Example: Example, TDOAFDOALocMvgSrcSen
    All: TFDOALocBiasRed.zip

TDOA Localization in Closed-Form With Reduced Bias

    Reference: K. C. Ho, "Bias reduction for an explicit solution of source localization using TDOA," IEEE Trans. Signal Process., vol. 60, pp. 2101-2114, May 2012.
    BiasRed Solution: TDOALoc_BiasRed
    BiasSub Solution: TDOALoc_BiasSub, BiasTDOALoc
    CRLB: TDOALocCRLB
    Example: Example, TDOALoc
    All: TDOALocBiasRed.zip

TDOA and FDOA Localization of Multiple Disjoint Sources in Closed-Form With Sensor Position and Velocity Errors

    Reference: M. Sun and K. C. Ho, "An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties," IEEE Trans. Signal Process., vol. 59, pp. 3434-3440, Jul. 2011.
    Solution: TDOAFDOALocMultiDisjMvgSrcSenLocErrSH
    CRLB: TDOAFDOALocMultiDisjMvgSrcSenLocErrCRLB
    Example: ExampleOneSource, ExampleTwoSources, TDOAFDOALocMvgSenPosErr
    All: TDOAFDOALocMultiDisjMvgSrcSenPosErrSH.zip

TDOA Localization of Multiple Disjoint Sources in Closed-Form With Sensor Position Errors, Without Requiring Hypothesized Source Positions

    Reference: M. Sun and K. C. Ho, "An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties," IEEE Trans. Signal Process., vol. 59, pp. 3434-3440, Jul. 2011.
    Solution: TDOALocSenPosErrMultiDisjSrcSH
    CRLB: TDOALocSenPosErrMultiDisjSrcCRLB
    Example: Example, TDOALocSenPosErrMultiDisjSrc, TDOALocStnySenPosErr
    All: TDOALocSenPosErrMultiDisjSrcSH.zip

TDOA Localization in Closed-Form With Sensor Position Errors and Multiple Calibration Emitters at Inaccurate Locations

    Reference: L. Yang and K. C. Ho, "Alleviating sensor position error in source localization using calibration emitters at inaccurate locations," IEEE Trans. Signal Process., vol. 58, pp. 67-83, Jan. 2010.
    Solution: TDOALocSenPosErrMultiCalEmtrIaccLoc
    CRLB: TDOALocSenPosErrMultiCalEmtrIaccLocCRLB
    Example: Example
    All: TDOALocSenPosErrMultiCalEmtrIaccLoc.zip

TDOA Localization of Multiple Disjoint Sources in Closed-Form With Sensor Position Errors

    Reference: L. Yang and K. C. Ho, "An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions," IEEE Trans. Signal Process., vol. 57, pp. 4598-4615, Dec. 2009.
    Solution: TDOALocSenPosErrMultiDisjSrc
    CRLB: TDOALocSenPosErrMultiDisjSrcCRLB
    Example: Example
    All: TDOALocSenPosErrMultiDisjSrc.zip

TDOA Localization in Closed-Form With Sensor Position Errors and a Calibration Emitter

    Reference: K. C. Ho and L. Yang, "On the use of a calibration emitter for source localization in the presence of sensor position uncertainty," IEEE Trans. Signal Process., vol. 56, pp. 5758-5772, Dec. 2008.
    Solution: TDOALocSenPosErrCalEmtr
    CRLB: TDOALocSenPosErrCalEmtrCRLB
    Example: Example
    All: TDOALocSenPosErrCalEmtr.zip

TDOA and FDOA Localization in Closed-Form With Sensor Position Errors, Moving Source and Sensors

    Reference: K. C. Ho, X. Lu and L. Kovavisaruch, "Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution," IEEE Trans. Signal Process., vol. 55, pp. 684-696, Feb. 2007.
    Solution: TDOAFDOALocMvgSenPosErr
    CRLB: TDOAFDOALocMvgSenPosErrCRLB
    Example: Example
    All: TDOAFDOALocMvgSenPosErr.zip

TDOA Localization in Closed-Form With Sensor Position Errors, Stationary Source and Sensors

    Reference: K. C. Ho, X. Lu and L. Kovavisaruch, "Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution," IEEE Trans. Signal Process., vol. 55, pp. 684-696, Feb. 2007.
    Solution: TDOALocStnySenPosErr
    CRLB: TDOALocStnySenPosErrCRLB
    Example: Example
    All: TDOALocStnySenPosErr.zip

TDOA and FDOA Localization in Closed-Form, Moving Source and Sensors

    Reference: K. C. Ho and W. Xu, "An accurate algebraic solution for moving source location using TDOA and FDOA measurements," IEEE Trans. Signal Process., vol. 52, pp. 2453-2463, Sept. 2004.
    Solution: TDOAFDOALocMvgSrcSen
    CRLB: TDOAFDOALocMvgSrcSenCRLB
    Example: Example
    All: TDOAFDOALocMvgSrcSen.zip

Geolocation Using TDOA and FDOA

    Reference: K. C. Ho and Y. T. Chan, “Geolocation of a known altitude object from TDOA and FDOA measurements," IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 3, pp. 770-783, Jul. 1997.
    Solution: GeoTDOAFDOA_EmitterOnEarth, lamda2_GeoTDOAFDOA, poly2coeff
    CRLB: GeoTDOAFDOA_CRLB
    Example: Example_Fig6
    All: GeoTDOAFDOA_AltCnstt.zip

TDOA Localization Using Closed-Form Solution

    Reference: Y. T. Chan and K. C. Ho, "A simple and efficient estimator for hyperbolic location," IEEE Trans. Signal Process., vol. 42, pp. 1905-1915, Aug. 1994.
    Solution: TDOALoc
    CRLB: TDOALocCRLB
    Example: Example
    All: TDOALoc.zip